
  
 

  
 

 

Final Project Checkpoint 2 
Building and Training a Neural Network 

100 Points 
 

Help Policy: 

AUTHORIZED RESOURCES: Any material from the CS 471 course site and online sources 
regarding Python syntax only.  This does not include any solutions or solution stubs for 
challenges similar to those asked in this assignment. 
NOTE: 

 Never copy another person’s or group’s work and submit it as your own. 
 Do not jointly create a program or complete this assignment unless explicitly 

allowed. 
 You must document all help received from sources other than your instructor or 

instructor-provided course materials (including your textbook). 
Documentation Policy: 

 You must document all help received from any source other than your instructor 
or instructor-provided materials, including your textbook (unless directly quoting 
or paraphrasing). 

 The documentation statement must explicitly describe WHAT assistance was 
provided, WHERE on the assignment the assistance was provided, and WHO 
provided the assistance, and HOW it was used in completing the assignment. 

 If no help was received on this assignment, the documentation statement must 
state “None.” 

 If you checked answers with anyone, you must document with whom on which 
problems. You must document whether or not you made any changes, and if you 
did make changes you must document the problems you changed and the 
reasons why. 

 Vague documentation statements must be corrected before the assignment will 
be graded and will result in a 5% deduction on the assignment. 

Turn-in Policies: 

 On-time turn-in is at the specific day and time listed on Canvas. 
 Post the required solution files (as specified) to your Github repository. You will 

use the same Github repo as checkpoint 1. Ensure you add the following to your 
final commit comments: “FINAL TURN-IN CHECKPOINT 2” 

 
 
  



  
 

  
 

Instructions 

For this portion of the final project you will continue to build on your code you started in 
Checkpoint 1 (so using the same github repository). When you turn-in your completed code 
for Checkpoint 2, ensure you add “Checkpoint 2 Turn-in” to your commit comments.  

Overview 

In Checkpoint 1, you familiarized yourself with the pysc2 Application Programming Interface 
(API), which allows you to programmatically control and gain information about the current 
state of a StarCraft II game. You should have also built a start-up script that builds four 
supply depots, two barracks, as many marines as possible, and moves the marines to attack 
another quadrant in the Simple 64 map.  
The goal of this checkpoint is to train a neural network to use reinforcement learning to beat 
the enemy. Figure 1 shows these steps: 
 

1) Initialize agent and Starcraft II environment [done] 
2) Run a scripted StarCraft II game to build barracks, supply depots, and marines 

[done] approximately 10 times. Move marines to random quadrants on the map.  
3) For each game, record information about the game’s state, the location you sent 

the marines, and whether you won or lost this game. 
4) Use the recorded information to train a neural network. 
5) Run the scripted Starcraft II game to build barracks, supply depots, and marines. 

When the marines need to choose a location, use the neural network to predict 
where the marines should move. For each game (again, approximately 10 games), 
record the information about the game’s state, the location the neural network sent 
the marines, and whether you won or lost the game. 

6) Re-train the neural network, including with this updated information. 
7) Continue training the neural network (steps 5-6) until it regularly beats its 

opponents. 
8) Record your results and save your neural network for comparison to other teams.  

 
 

 
Figure 5: Reinforcement Learning Game Loop for StarCraft II 



  
 

  
 

 
 

 
Figure 1: Example architecture of shallow neural network for Playing StarCraft II 

Figure 1 provides a high-level overview of the sequential neural network you will build and 
train in this checkpoint to play StarCraft II.  
 
Starting from the left, you can collect these input values each time you issue a command for 
marines to move. These input values will represent a greatly-simplified version of the current 
state of the game. While there are exponentially-many unique game states, these six features 
are plausible predictors of success against an easy opponent; additionally, they take less 
memory to store than every Q-state and allow Q-learning to succeed. (Remember 
approximate Q-learning from an earlier assignment!) These features are all accessible from 
the pysc2 environment variable. You will need to research how to extract these. The FAQ 
section at the end of this document contains some hints.  
 
The output values represent the four quadrants in StarCraft II. These output values are 
named so that the same effect will be achieved regardless of whether your command center is 
located in the top-left or bottom-right quadrant of the game. For example, “retreat-vertical” 
will always send a marine to the quadrant vertically aligned with the enemy.  
 



  
 

  
 

 
Figure 2: Illustration of the 4 positions a marine can be moved, when the player's base is in the top-left 
corner 

 
Figure 3: Illustration of the 4 positions a marine can be moved, when the player's base is in the bottom-
right corner 

Figure 2 and Figure 3 show both possible starting configurations for the Simple 64 minimap.  
 
Figure 1 also shows a hidden layer with four neurons, but you can put any number of hidden 
layers and neurons per hidden layer in your model. Changing hyperparameters like this to 
make your predictions more effective will be the main goal of checkpoint 3.  
 

 

Data Collection (25 points) 

To train a network, you need to collect state information about the game. We recommend 
collecting this information each time you issue an attack_quadrant command (our name) to a 
set of marines. Our game is set up so that we issue individual move commands to each 
marine. Once each marine has moved, the “move” is complete, and we might let the marines 
go on attacking that quadrant for some number of steps – if we moved too quickly, they 



  
 

  
 

couldn’t do any real damage. We can even keep training marines at the barracks while 
waiting to issue another move command. But we record the game state whenever we tell the 
first marine to move.  
 
Now is a good time to talk about how you’ll expand your checkpoint 1 code to include this 
checkpoint’s functionality.   
 
If you had trouble with checkpoint 1, please come for assistance.  
 
A good place to start on this checkpoint is to refactor your code and make some small 
changes. You might want to place all of your commands to build and train marines into a 
single method, perhaps called build(self, obs) or scripted_start(self, obs). The reason is 
that these things will only happen once per game, while the attack command that moves the 
marines will happen multiple times. Be sure to re-run your game to make sure it still works. 
 
A second goal will be to change your code so that the marines attack a random quadrant, 
perhaps called attack_quadrant(self, obs). The attack command doesn’t change, only the 
destination (x,y) coordinates. You might want to generate a random command (enemy, 
retreat-horizontal, etc.), and together with the starting location of your base, you can 
calculate the (x,y) location. Good software design practice encourages you to put this in a 
helper method. The more focused each method is, the better. (We used 3 for this functionality 
(, and ~24 methods altogether for this checkpoint!) In fact, looking ahead to the game loop, 
I’ll soon need some code to track which step I am on, perhaps using a finite state machine 
pattern (see FAQ for a few more details). 
 
At this point, when you run your program, the marines should repeatedly run to a different 
quadrant to attack it, until the episode ends with either a win, loss, or tie. Using the standard 
game loop, it will then start a new game and repeat the process. 
 
Now you are ready to store the game state data needed to train a neural network. You’ll want 
to structure this in some way that is clear and easy to work with, since you’ll be saving data 
of various types (features, actions, game results) thoughout the game. One way is to create a 
couple of new classes:  
 
For example, you could create a ScenarioRecord (see Figure 4) for all the data for a single 
game episode. The ScenarioRecord just holds a list of data that was collected each time the 
group of marines moved to a new quadrant. Each entry in the list can be another list or tuple 
that contains all of the inputs to the neural network and the action that was selected (or 
another class to hold these things). An example of potential inputs are listed in Figure 1, 
although you can add or remove inputs to make your network work better. It will also need 
the result (win/loss/tie) of the game. 
 
If you want, you can also create a second class called HistoryRecord. HistoryRecord just 
contains a list of ScenarioRecords, one per episode. You can build additional, helper methods 
in HistoryRecord and ScenarioRecord to access and manipulate the data from the game. 
For example, one could be generateNumpy(), which outputs your data in the numpy format 
expected by keras, which we’ll discuss next. 
 



  
 

  
 

 
Figure 4: Class Diagram for objects to store game play data. 
You don’t have to use this exact set of classes, but it is likely to be easier to work with objects 
during data collection, and then only use numpy arrays when it’s time to train the net. 

 

Keras Sequential Network Configuration (15 points) 

Keras makes building Neural Networks easy in Python. Use the lessons from class and the 
Keras Sequential tutorial to get started: The Sequential model (keras.io). Your model should 
accept an input describing the hidden network structure and then create that structure.  
 
You may want to create a NeuralNetwork class, or at least a separate method. that will hold 
the model. You can instantiate the class to create an object representing your model. After 
you train your model, this class will hold the trained weights so you can easily perform 
predictions based on new data.  
 
NOTE: Pay close attention to the Setup portion of the Keras tutorial. Keras requires you to 
install and import the Python keras and tensorflow packages (like we imported pysc2 in 
checkpoint 1), and will generate an error if you don’t. 
 
Focus on building a Neural Network that is generalizable, in case you want to change options 
while you are training the network. For example, an input to initialize the Neural Network can 
be a list of hidden layers, e.g., [5 10 5] represents three hidden layers of size 5 neurons, 10 
neurons, and 5 neurons.  
 

______________________________________  

Data Preprocessing (15 points)  

 
Data pre-processing will involve two major steps. First, you need to format the data you 
collected in ScenarioRecords and HistoryRecords into numpy arrays, since Keras models 
require that format. NumPy is a Python package for matrix and scientific calculations (think, 
adding MATLAB or Octave capabilities to Python). For this step, we will only utilize the NumPy 
arrays data structure.  
 



  
 

  
 

NumPy arrays, like C arrays, are fixed size: when the array is initialized, either all of the array 
elements must be set, or the array size must be specified. Easy-to-digest information on how 
to initialize and access NumPy arrays can be found at: NumPy Creating Arrays 
(w3schools.com). We suggest also reading the pages linked in the sidebar to learn NumPy 
array functionality beyond just creating one. You will also install and import the numpy 
package to your Python environment like you imported pysc2 in checkpoint 1.  
 
Your final numpy array will be a 2D array with one row for each record, and one column for 
each feature you chose to use. For example, we used 6 features to train the network shown in 
Figure 1. The number of rows will vary depending on the actions taken. If your marines 
moved an average of 5 times per game, and we played 10 games, then would expect 50 
rows. But some games will be quicker (like if it randomly chose the enemy action and your 
marines immediately defeated the enemy) and some will be longer (like those where your 
marines only stay home or retreat, and it ends in a tie). 
 
The second data pre-processing step is to normalize your data (make all of the values 
between 0.0 and 1.0), so it can be properly interpreted by the neural network. As described in 
class, the process of normalizing input data prevents one input attribute with large magnitude 
from overwhelming other input attributes. For example, consider how large the timestep can 
be compared to the number of Marines! You can do this outside of keras, or by adding a 
Keras built-in normalization layer between the input layer and the hidden layers. A description 
of the layer can be found at BatchNormalization layer (keras.io). For the final turn-in of the 
Final Project, you will report on how you have experimented with your model to improve its 
performance – normalizing is just one thing you could discuss. We expect most of the 
discussion will center on choice of input features and experiments with various 
hyperparameters. 
 
We are doing supervised machine learning, that is, the outputs are known and we train on 
input, output pairs. So you will also need to create a second NumPy array for the output 
values (i.e., the selected actions). We recommend that you create a NumPy array that uses 
one-hot encoding to represent the actions. One hot encoding means you will have a column in 
your array for each possible action. The selected action will be represented with a 1 and non-
selected actions will be represented with a 0. For example, if our columns were in the order: 
move-home, enemy, retreat-horizontal, retreat-vertical, then a retreat-horizontal action 
would be represented by [0,0,1,0], while a retreat-vertical would be [0,0,0,1].  
 
In order to incorporate a discounted reward value for winning or losing, you can take the 
reward at the end of an episode (1 = win, 0 = tie, -1 = loss) and divide it by the number of 
steps to play the game. Instead of representing the selected action with a “1,” you can 
replace the “1” with the fractional reward value.  Thus, a retreat-horizontal action that 
resulted in a win in 600 steps would actually be [0, 0, 0.0016667, 0] and an enemy action 
that resulted in a loss in 1000 steps would be [0, -0.001, 0, 0].  

 
Run Model (10 points) 
 
Once you have configured your model and pre-processed the input data, you will need to train 
your model and then run inference on the trained model to output a predicted action. The 
Keras tutorial: Training & evaluation with the built-in methods (keras.io) provides an excellent 
overview of how to train your model and use new data to conduct inference.  
 
Ensure that your model runs and it produces an output. The output does not have to be 
accurate at this point (we’ll tune the model in the final checkpoint), but it does need to run 



  
 

  
 

and produce an action. Ideally, it will produce different actions based on different states of 
the game.  

 

Save and load the Model (15 points) 
 
You’ll want to save the model so you can pause training and continue training later. You will 
also want to save the model for the final turn-in. Your trained and tuned model’s performance 
will be compared to other students on the Simple 64 map. Instructions for saving and loading 
your model can be found at: Save and load Keras models  |  TensorFlow Core 

 
 

Configure Reinforcement Learning Game Loop (25 points) 
 

 
Figure 5: Reinforcement Learning Game Loop for StarCraft II 

Figure 5 shows the program flow for initializing the Keras Sequential Neural Network and 
utilizing Reinforcement Learning to continue training the Neural Network. _NUM_EPOCHS and 
_NUM_RL are constants representing how many times the network will be initialized with 
random data and how many times it will be trained in a reinforcement learning configuration, 
respectively. While debugging, small values might be fine for each, but at some point, you’ll 
want to run it with values of at least 10 for each so you have enough data to train the 
network. Note that there is only one network – in reinforcement learning mode, we don’t 
reset the network each time we train it, so each time we train on a new episode, we are fine 
tuning the network. In each episode, a game will be played to completion. These games are 
intended to build a randomized starting point for the model to train from. The models trained 
by DeepMind utilized replays of expert players playing StarCraft; we are basically creating our 
own version of these replays using random play on the Simple 64 map. Note that the early 
training is pure exploration while the later training is exploitation. Once you implement this 
game loop in your code, your project will be ready for hyper-parameter tuning (the final 
checkpoint).  

 



  
 

  
 

 

Grading Rubric 

 

 
 
 
FAQ 
 
Some frequently-asked questions (or that we anticipate you may ask, at least) 
 
Q: I liked the 6 game state features you mentioned in the intro. How do I get them in my 
code? A: With the exception of timesteps, you can probably get most of the info from the 
individual units. You already wrote code back in checkpoint 1 to extract a list of all units of a 
certain type. You can tweak that to get health of those units, for example. For a list of things 
available to you, see the pysc2 repo. Like lib/features.py has a FeatureUnit class that looks 
promising: all of its contents are fields that units have.  Since your agent is a BaseAgent, you 
might want to look to see what data BaseAgents have too (in the pysc2/agents folder). 
 
Q: How does my agent know when the game ends?  
A: I didn’t find it right away in the docs. But Steven Brown has a whole list of other tutorials 
(beyond the two you did in checkpoint 1) that might be useful. Step 7 in this one showed how 
to detect the end of a game (and it felt a little obvious once I read it).  
 
Q: What is a Finite State Machine?  
A: The CS majors probably have a little advantage here, since they must be discussed in the 
required Languages course. It’s like the Markov Decision Processes we discussed without 
random actions. Basically, an action have different effects depending on which user-defined 
state the program is in. The game loop pictured above might translate to a few different 
states (like building, attacking randomly, attacking using the network, ...) The step(self, obs) 

Expected Functionality Points Allowed Points Earned 
Data Collection: Program collects game state data 
(features) and the selection action (retreat_horizontal, 
enemy, etc) each time a move marine action is issued. 

20  

Keras Sequential Neural Network Configuration: Program 
creates a class or method to store a NeuralNetwork. 
Function to create the neural network allows the user to 
easily specify the hidden-layer configuration.  

15  

Data Pre-processing: Data is copied into a NumPy array 
and accepted by the Neural Network. Data is normalized 
either before training or by a network layer.  

15  

Run Model: Neural Network trains and runs without 
errors 
 

10  

Save and load the model: Model is saved and persists 
after the program ends.  

15  

Game Loop Configuration: Program is configured to run 
in the manner described in Figure 5 

25  

Total 
 

100  



  
 

  
 

method shouldn’t try to do ALL of that in one method. But it could use the current user-
defined state to call a helper method. If I’m building, call and return my build() method. Once 
build finishes, we change the state to attacking randomly. So when step() is next called, it 
detects that and calls my attack_random() method. And so on. It’s a commonly-used pattern 
in some kinds of software like this. 
 
 
 
 


